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ABSTRACT

Carrier diffusion and thermal conduction play a fundamental role in the operation of high-power, broad-arca semi-
conductor lasers. Restricted geometry, high pumping level and dynamic instability lead to inhomogencous spatial
distribution of plasma density, temperature, as well as light field, due to strong light-matter interaction. Thus,
medeling and simulation of such optoelectronic devices rely on detailed descriptions of carrier dynamics and cnergy
transport in the system.

A sclf-consistent description of lasing and heating in large-aperture, inhomogeneous edge; or surface-cmitting
Jasers (VCSELs) require coupled diffusion equations for carrier density and temperature. In this paper, we derive
such equations from the Boltzmann transport equation for the carrier distributions. The derived self- and mutual-
diffusion cocflicients are in general nonlinear functions of carrier density and temperature including many-body
interactions. We study the effects of many-body interactions on these coefficients, as weil as the nonlinearity of
these coefficients for large-area VCSELs. The effects of mutual diffusions on carrier and temperature distributions
in gain-guided VCSELs will be also presented.
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1. INTRODUCTION ’

In order to achieve higher semiconductor laser output power, two desiga rules are implemented on chip level——broad
active area and arrayed structure. As it turns out, the right optical phase locking is necded to achieve cfficient
generation of stable far-field laser output.! Both changes in the carrier density and temperature modulate the optical
phase through carrier-induced phase shift, and the effect increases in importance as the active region enlarges. At
the same time, requirements for more stringent control of the transverse-mode dynamics arise since mode spacing
decreases and more modes become dynamically active, as a result of this enlargement and increase in current injection
level.2 Tn addition, filamentation and more complex: pattern formation and dynamics occur as laser operates at high
power level.?3 On the other hand, theoretical challenges faced in describing high-power, broad-area semiconductor
lasers at device-physics level are to fully understand the interplay of carrier dynamics and laser field distribution as
the ultimate output quality of the laser beam depcuds on the near-ficld pattern and spatial phase relation. Since
stimulated interaction affects the former and carrier dynamics influences the latter, plus phase modulation and
locking become a sensitive function of the plasma temperature as device size increases, in addition to the necessity
of a self-consistent framework for the description of an active device on the thermodynamic level, it is thus natural
to take the plasma temperature and nonlinearity of the physical systam into account. Previous attempts to model
“such a dynamic system involve both empirical mmethod®* and first-principle treatment.® The advantage of the former
approach is easy manageability and computational economy, while the latter features fundamental rigor and generic
inclusiveness. In contrast, a hydrodynamic model starts from first principie, retains part of its rigor and inclusiveness,
but allows greater numerical cfficiency. The purpose of the present paper is to summarize such a model we have
developed from Boltzmann transport equations (BTEs). in parallel with the semiconductor Bloch equation (SBE),
discuss its impact on simulations, and present numerical results for gain-guided vertical-cavity surface-emitting lasers

(VCSELS).
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This paper is organized as follows. In the next section, theorctical results will be summarized, and expressions
for sclf- and mutual-diffusion cocfficients for carrier density and plasma temperature will be given. Then, numerical
results and discussions arc presented, focusing on several major effects in our model. Finally, we will sum up and
make some obsecrvations for future work.

2. THEORY

Now let us summarize the hydrodynamic model we have developed for the description of carrier dynamics in the
active region of a semiconductor quantum well (QW) laser. We start from the Boltzmann transport equations’
(BTEs) for the non-cquilibrium carrier distributions ne (k,7) for electrons (a = ¢) and holes (a = h) in parabolic
cnergy subbands, where & and 7 are all two-dimensional vectors. Only one subband each is treated for electrons and
holes. Collisional contributions accounted for in the BTEs are the dominant ones: carrier-LO (longitudinal optical)
phonon scattering, intraband (both a-a and eh) carrier scattering. As a side note, carrier scattering is explicitly
retained before we make any assumptions and approximations, which is where our approach differ from others.5-8
This unique feature allows a natural and convenient handling of ambipolar transport regime, as it turns out, in the
development of our model. Moment equation method® is used for derivation of the model. The nth-order moment
and associated current are defined by summing over all degrees of freedom the non-equilibrium distribution function
with a corresponding weight function F2 as below,
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where S is the active region area, F2 is 1, Rk, and A2k2 [2mg,, for n = 0,1,2, respectively, and 1')';3 = hE/ma. The first
three moments and currents are conventionally denoted as: density N* = % , momentum Pa= yYf, energy E* = ¢§;

density current J > = J&, momentum current J 2 energy current = J >. Then, it is straightforward to show
that the first three moment equations can be wrlttcn as .

B N® +0;:- J% = R, 2

8P + 05 J% + N0 (8¢ + q°®) = B% + 8:P%|en + 8 P10, (3)

OE* + 07 J& + 07 (6* + q°®) - J% = R + 8t E®|en, + B E%|10 , (4)

for electrons (d =e) and holes (ar = 'h). The -rimg-lit-hénd-side terms are the results of summihg up the corresponding
generation-recombination (g-r) terms in BTEs. Both iutraband (eh) and carrier-LG phonon (LO) scatterings couple
different moment equations.

It is worth noting that Egs. (2-4) are exact, but not in closed form—the so-called hierarchy problem. As an
approximate solution, we assume quasi-equilibrium for the electron-hole plasma, as in fluid dynamics where a drifted
Maxwell distribution is assumed.'® We point out that the premise of quasi-equilibrium, upon which further develop-
ment of our model is hinged, is well established in semiconductor laser theory.!!"!? It means that electrons and holes
in the plasma, driven out of thermal balance by the laser ficld and external pumping, are individually described by
equilibrium distributions of their subsystems in an inertia frame of reference. The physical mechanism behind this
assumption is the ultrafast carrier intraband (a-a) scattering on the femtosecond time scale.!* The quasi-equilibrium

is characterized by the drifted Fermi-Dirac (DFD) distributions, n% = = fo(k — k% %) =1/{1+ exp[ﬁa(e- s, ~ pall}s

where kD is the drift wavevector and p, is the chemical potential. The drift wavevector is related to the first order
" moment and the chemical potential is given by carrier density and temperature. Thus, a total of six parameters for
the electron and hole distribution functions uniquely relate to the six moment variables. With the aid of the known
functional form of the DFDs, the right-hand-side terms in Eqs (2-4) therefore can be expressed in terms of carrier den-

sities, drift wavevectors, and temperatures. With all this and some symmetric considerations, the hzerarcfg; problem
for ny(k,r) is solved-—the equations are closed. In contrast, the problem for the interband polarization p(k, 7} needs
more claborate treatment!® which will not be discussed here, as we focus on carrier transport in this paper. Now the
currents, using the DFD functions, of various orders can be easily shown to depend on the moments after defining the



thermal energy, by subtracting the kinetic energy from the energy, according to We = E¢ — Pa. pa /2m,N®, where
Po = No hk" Thercfore, the relations between currents and moments allow us arriving at a closed set of cquations
for {N a Paw @}, a=elh. Furthermore, since the thermal energy is a function of carrier density and temperature,
we have the liberty to usc another equivalent set of variables, {IV ”,P'“,T(.}, a=¢|h, in which we will derive the final
form of equations for plasma transport.
The resulting equations for {N ¢, P We} are derived as follows, after expressing the currents the g-r terms, and
collisional terms in the moments,
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where R, = R&+R%(P)?/2ma(N®)2— P RS /maN®, BW|eh = O E®|en— 8 P*|en- P* /mo N, and 8, W?| L0 =
HE*Lo — 3113"|Lo . ﬁ“/ m,N®. Equations (5-7) are the general forms of the moment equations describing carrier
dynamics in a semiconductor laser, and should be solved together with Poisson equation, the polarization equations,
and Maxwell equation. Terms {R$,, O:W%|en, 8:W<|Lo} differ by nonlinear terms in P* from {Rg, 0tE%|en,
O E*|Lo}. As it turns out, P*’s are proportional to the space gradients, so the differences can be neglected in case
of weak inhomogeneity. Furthermore, the set of equations above can be simplified by eliminating the momentum
equations (6} by resortmg to the adiabatic approximation.® First, for weakly inhomogeneous systemns, we can ignore
the nonlinear terms in P2, _though numerically they pose no problem. Then, the scattering terms can be linearized
in the first moment, as (9¢P°‘leh = —Yerm(P*/mgy — Pﬂ/mg) and 3tP°|Lo = -'7L0P , where a # 3, 7en is the
momentum relaxation rate due to intraband carrier scattering, m,=mmy/(m, + m;) is the reduced mass, and v¢o
is the momentum relaxation rate due to carrier-LO phonon scattering. As a result, the solutions for the momenta
are given as
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which has two terms with distinct physical meanings—the first one, due to intraband (eh) scattering, equilibrates
_the two carrier subsystems, and the second one equilibrates each carrier subsystem with the LO phonons.

Now let us consider some limiting case that allows a one-component description of the plasma dynamics, ‘.e.,
the ambipolar regime. We have mentioned that the ultrafast intraband (a-a) scattering in the femtosecond range
is the physical mechanism that leads to the establishment of quasi-equilibrium within each subband. At the same
time, intraband (ch) scattering, which is on the same time scale,'®17 requires self-consistent treatment within the
framework of quasi-equilibrium, or we need to consider dynamic correlation between electrons and holes imposed by
the intraband (eh) scattering. Under the premise of quasi-equilibrium, detailed balance (DB) requires'® that T, = T,
and hl_v'eD /me = hl_c.}’) /mpy, which is intuitively clear since hl’c’;") [mq = 4 is the drift velocity of the subsystem. These
two conditions are equivalent to the ambipolar approximation, since they will reduce the original two-component
problem to a one-component one. However, to derive the ambipolar diffusion coefficients, and understand when and
why the ambipolar approximation is valid, we need to look at this issuein more details. Specifically, we consider
the dynamics around the DB state by looking at the equations for momenta and energies with scattering terms
lincarized around the DB state. As we sce from Eq. (8), the DB condition for the drift velocity @ is, in general, not
valid. Neverthelcss when 785 < 7en, the second term in Eq. (8) can be neglected, and it leads to the conclusion of
&‘f) = uD =, if N® = N* = N. Thus, we have, in the ambipolar regime,
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Therefore, validity of the ambipolar diffusion approximation (ADA) for two components of unequal masses demands
that the intraband (inter-species) scattering be much faster than scattering between LO phonons and each component
of the plasma (clectrons and holes). Since LO phonon scattering depends sensitively on temperature and the intraband
scattering on density, it is clear that ADA will no longer be valid at high plasma temperaturce and relatively low carrier
density. For now, let us continue the discussion of the limiting casc of the ambipolar regime. The hydrodynamic

equality of drift velocities of the carrier subsystems means that N¢ = N* = N will be conserved if we prepare
the system ncutrally initially, as indicated from the cquatlon of continuity, Eq. (2). Let this be true, then, charge
ncutrality climinates the need for Poisson equation, and reduces the density equations for clectrons and holes into
one for the carrier density N, that is

ON + 0y - fN =Ry . (10)

In the same spirit, we can show from Eq. (4) that T, = T, = T}, as was found in Ref. 18 in case of a weak electric
ficld. This is exactly what the DB condition in quasi- cthbnum requires. We comment that the equalities between
the two temperatures and the two drift momenta are the consequences of the quasi-equilibrium assumption when
the phonon scattering is much weaker than the intraband scattering. Using the total plasma energy in place of the
sccond moment and Eq. (8), the equation for the second moment is given as follows,

6,W+6,«-fw =Rw + 0:W|Lo , (11)

where W = We + Wh, Jw = 2Wi, Rg = RS, + R, W (Lo = 8:E®|Lo + 8:E*|Lo. In the above equation, weak
inhomogeneity has been assumed. To convert the above equation into plasma temperature, the functional dependence
of the thermal energy on carrier density and plasma temperature, W = W (N, T;,) is used, and the equation is found
as,

8Ty + O - Jr + jn - Jn — Osjw - Jw = jw (Rw + 8 WlLo) — in R , (12)
where Jr = jw Jw — inJn, jw = 1/0rW, jn = jw ONW.

The derived cquations above, Egs. (10,12), include many-body corrections and are applicable to neutral electron-
hole plasma in a semiconductor quantum well. Using Eq. (9), the diffusion coefficients can be determined in terms of

the macroscopic variables and microscopic quant:txes for the plasma. First, the currents for density and témperature
are given as Jy = N and Jr = (2jwW/N — ]N)JN, where Jw = 2Wi is used. Then, in terms of the gradients of

plasma density and temperature, the coefficients are defined according to
Jv = —DnnO:N - Dn1O:Ty, (13)
Jr = —Dyn0:N = Dr10:T, . (14)

Finally, after expressing the drift velocity, Eq. (9), in terms of the gradients of density and temperature, the diffusion
cocfficients are straightforwardly obtained as

r 7 .
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where W is the total thermal energy of the plasma, de, = Je° + d¢” is the total Fock exchange correction to the
bandgap, and T, = [fyio'yﬁo(me + mp) + Yer(Mevio + MaviEo)l/Ven . Before moving on, we introduce the following
terminology for the diffusion coefficients for future discussions. The coefficient is dubbed self-diffusion when it
connects the gradient of a variable to its current, and mutual-diffusion otherwise. In addition, variable name is used
to label the coefficient that relates to the variable gradient. For example, Dz is called mutual-diffusion density
coefficient accordingly.



To complete this section, we write down the macroscopic polarization and lascer ficld equations, which are treated
as in Ref. 19. The polarization is decomposed to two parts, electronic and background, as P = Py + P, where the
background contribution is given as By = epepxo(V, Tp, T1)€, and the clectronic part is dynamically described by

Vafpl = {_rl(Ny Tpv Tl) + z[“"(‘ - wl(N’ Tpa T‘l)]}P - iEofbAl(N, pr ﬂ)g ? (17)

where the parameters xp, the effective background susceptibility, I'1, the gain bandwidth, w;, and A;, the Lorentzian
oscillator strength, are fitted to microscopically computed values as a function of carrier density N, plasma temper-
ature Tp, and lattice temperature 7;.1® The laser field is described, after integrating over the assumed longitudinal
mode distribution, by

i KT
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Standard notations are used in the above equations, for example, w, is the central frequency, and T is the optical
mode confinement factor. Finally, the generation-recombination terms in Eqgs. (10) and (12) are given as below,

- Ll b
Ry = '7NN+6 ) (P*&),

Rw = 1’61/_\.159 — N, [(hAw, — ihy,) P*E — iywhO P*E]

where Aw, = w. — w; is the detuning, J is the injection current with a pumping profile and an quantum efficiency
n, L., is the aggregate active region width, AE, is the bandgap offset, and N, is scaling constant of 10'? cm™2. In
the equation for Ry, we neglect the generation-recombination contributions and the last term is derived in Ref. 20.
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Figure 1. Fundamental mode results with (open-circled solid line) and without (x-symbol dashed line) plasma

heating effects for a gain-guided circular InGaAs VCSEL. Shown here are the cross-sectional distributions through

the center.

3. SIMULATION RESULTS AND DISCUSSIONS

The simulations are run for a gain-guided InGaAs/GaAs VCSEL operating at w, of 980 nm. Injection current profile
is circular with a diameter of 7.5 pm. The cavity length L .is 144 nm and L,, is 36 nm, which yields a " of 0.25.
The other VCSEL parameters and simulation details can be found in Ref. 21. Except the carrier lifetime (1/yn) of
2.5 ns, other rates are computed microscopically and fitted as a function of N, T}, and T;. Furthermore, we use an



injection current J of 1.496 KA /cm?, which is about 18% above the threshold current. And the lattice temperature
T; is assumed to be a constant of 295 K throughout our simulations.

First, we demonstrate the necessity of including plasma temperature in order to accurately predict lasing per-
formance of the VCSEL. As shown in Fig. 1, plasina heating {(iniddle panel) lcads to roughly 40% reduction in the
ncar-ficld laser intensity (right panel) and a weaker spatial hole burning effect (left panel). The shoulder structure in
the plasma tempcerature distribution is attributed to the restrictive current pumping profile which is disk-like with
a diameter of 7.5 um constant pumping region in the middle and a smooth continuation area of total diameter of
13.5 pm. Beyond this region the pumping current is zero. As a result, inside the middle region, injection heating
contributes to a higher plasma temperature, while in the continuation area a dip structure develops in the shoulder
and explanation is given in Subsection 3.3. Qualitatively, plasma heating effects cause gain degradation, carrier
density modification, weaker electronic susceptibility, and thus smaller laser intensity.
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Figure 2. Numerical results of diffusion coefficients in log-log scale. Insets (in I'near XY scale) show the percentage

corrections to the coefficients due to the many-body exchange interactions. Indicated are the nonlinear dependence
of the coefficients on carrier density and many-body effects on them. Results at three temperatures are shown: solid

line—200 K, dotted line-300 K, dot-dashed line—400 K.

3.1. Many-body effects on diffusion coefficients

We now discuss the many—body effects on the diffusion coefﬁcxents owing to the attractlve Coulomb interactions
Vbetween electrons and holes. Exhibited in the insets of Fig. 2, arc the percentage change in the coefficients after the
Fock exchange term in Eqgs. (13-16) is taken into account. Thézﬁé}ige is around 10% at typical ITI-V lasing density.

The dependence of the effects on density falls into two groups: Dyn and Dry vs Dyt and Drr. The former shows
a maximum below the density of 10! em~2 and weak dependence at high density, while the latter increases with
density. The difference derives from the dependence of the bandgap renormalization (BGR} term J¢, on density and
temperature. Our numerical results?? for quasi-2D plasma in 8 nm GaAs/AlGaAs revealed a weaker than linear
relation power-law dependence for the BGR term on density in the free carrier regime. Similar results is expected
for the present material. In addition, at low density side, the BGR term increases with density faster than linear
dependence since the interaction increases as mter-parnde separation is reduced. The overall behavior of the former
group thus can be understood from these understandings. Tn!cofrﬁi)arlson the latter group is easier to understand,

since in the free carrier regime the magnitude of the BGR term increases with plasma temperature due to less effective
screening at higher temperature. As a result, the exchange correction increases in magnitude sub-linearly according
to our numerical results.2? Furthermore, data at three temperatures are shown: 200 K, 300 K, and 400 K. The figure
reveals that temperature reduces the many-body effects as well as improves the dlffusmty of the plasma, which is

mt;ultlvely comprehensible. As temperature increascs, the kinetic energy of a typical particle increases accordingly,

whlch leaves the barely changed mteractlon term less significant and makes the particle easier to diffuse around. This




is why the kT factor appears in the famous Einstein relation that connects diffusion coefficient and mobility of the

particle.
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Figure 3. Nonlinear diffusion effects of diffusion coefficient Dy in the InGaAs VCSEL. Shown are temporal
evolution towards steady state (1 ns) under constant pumping and no laser field and plasma heating. See text for

curve style usage.

3.2. Nonlinearity effect

As demonstrated in Fig. 2, the diffusion coefficients are nonlinear functions of carrier dens"lty and plasma temperature.
In the case of a gain-guided device, the density varies drastically from the active region to the non-lasing area, over
a few orders of magnitude. Therefore, the nonlinearity in the coefficients is expected to influence the density and
temperature distributions. For illustrative purpose and simplicity, we only consider the nonlinearity in the coefficient
Dy and neglect the temperature equation totally. Further, we consider two scenarios under constant current
injection: without lasing (Fig. 3) and with lasing (Fig. 4). Four cases are studies for comparison in each scenario: (a)
full nonlinearity—solid line; and three linear cases (b) Dy = 108.24 cm?/s—dotted line; (c) 54.12 cm? /s—dashed
linc; and (d) 23.84 cm?/s—dot-dashed line. The values of the coefficient are chosen in the linear cases corresponding
to different densities and the same temperature of 300K: (b) 5x10'2 cm~2; (c) 2.5x10'? cm~2; and (d) 7x10' cm—2.
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Figure 4. Nonlinear effects of diffusion coefficient Dy in the InGaAs VCSEL. Same as Fig. 3 except that laser
field is included. Note that, in the linear case with the largest coefficient (case b: dotted line), no lasing is predicted.



We discuss Fig. 3, the scenario with only carrier density diffusion, first. Shown are four snapshots (120 ps, 300
ps, 600 ps, and 1 ns) of the transient dynamics of the VCSEL under the same initial condition and evolving towards
a stcady state (1 ns). Note that the injection current is increased to 10.8 KA/cm? accidentally here and have no
influence on our comparison. Clearly, the larger the cocflicient, the more spreaded out the distribution, lower the
center peak, and faster the steady state approached. Conscquently, these effects impact on the lasing performance.
As we look at Fig. 4 now, attention is called to curve b (dotted line), which has the largest coeflicient and does not
lase. The reason is simple: not enough gain available, as indicated in the 1 ns steady state data. The carrier density
at the peak position is below transparency as compared to curve ¢ {dashed line). Summarily, the nonlinear effects
of the diffusion coefficients affect (1) the steady state distribution, (2) the transient dynamics, (3) threshold current,
and thus (4} laser output power and spatial hole burning effect.
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Figure 5. Mutual-diffusion effects in a gain-guided InGaAs VCSEL. Solid curve with open circles includes mutual-
diffusion terms, and the dotted curve with x symbol is without those terms. In fundamental mode operation, o~
discernable effect in the density and near-field distributions of the laser is shown. The dips in the shoulder structure
of the plasma temperature are gone when there are no mutual diffusions present.

3.3. Mutual dlﬁ'uswns between density and temperature

In this study we aim to examine the importance of the mutual-diffusion terms, first mtroduced by our model
in the simulation. We compare two cases: with (open-circled solid line} and without (x-symbol dotted line) the
mutual-diffusion terms in Eqs. (13 and 14), as they appear in Egs. (10) and (12). In fig. 5, the carrier density,
plasma temperature, and the near-field laser intensity are shown. In fundamental mode operation, under moderate
current pumping level as we are using in the present simulations, no discernable effects in the density and near-field
distributions of the laser are found. The reason is mainly that the coefficient values (refer to Fig. 2) tell that the
density gradient has a larger effect than the temperature gradicnt. This is corroborated in the temperature data
{center panel), as neglect of the mutual-diffusion terms changes its distribution and the dips in the shoulder structure
are removed. This revelation also explains the cause of the dips. Finally, the extraordinary discontinuities in the
data outside of the shoulder structure in plasma temperature are due to numerical glitches and under investigation.

4. SUMMARY

In this paper, we summarize our recently developed hydrodynamic model for semiconductor lasers. The model
includes plasma heating effects and is derived from first principles. In the case where carrier scattering predominates
over carrier-phonon scattering, an amblpolar regime is realized and the plasma can be. descrxbed like a one-component

physical system. This is the regime in which semiconductor lasers operate normally. We give the expressions for
diffusion cocfficients in this regime and investigate some major effects in our model for a exemplary, gain-guided,

single-mode VCSEL with an diameter of 7.5 pm. Nonlinear effects of one of the coefficients, Dy, on the performance
of the device under both non-lasing and lasing conditions are studied. It is found that the influence is appreciable in




accurately predicting the performance of the device. Also pointed out is the necessity of inclusion of plasma heating
in the simulation of semiconductor lasers. Finally, we study the cffect of mutual-diffusion interaction betwceen carrier
density and plasina temperature, and the effect is found to be negligible. Future studics will consider index-guided,
larger arca VCSELS and arrays.
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